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Orthosymmetries and Jordan Triples

Georges Chevalier1
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Orthosymmetric ortholattices (OSOLs) have been introduced in order to
approximate Hilbertian lattices (ortholattices of closed subspaces of a Hilbert
space). Axioms of OSOLs are selected properties of usual orthogonal symmetries
on a Hilbertian lattice and many posets defined by means of associative or Jordan
algebras possess a set of automorphisms satisfying these axioms. In this paper,
we describe and illustrate a method using Jordan triples and which provides a
common setting for the study of orthosymmetri es in associative algebras and
Jordan algebras.

INTRODUCTION

Orthosymmetric ortholattices (abbreviated OSOLs) have been intro-

duced in order to approximate Hilbertian lattices (orthomodula r lattices of

closed subspaces of a Hilbert space) more closely than by orthomodular
lattices (Mayet, 1992). Any Hilbertian lattice carries a natural (Mayet, 1992)

and unique structure of OSOL, and the main result of Chevalier (1995a)

asserts that, more generally, any orthomodular lattice of projections of a

Rickart *-ring, satisfying 2x 5 0 Þ x 5 0, also possesses a natural structure of

OSOL. There exist similar examples in Jordan algebras and the orthomodular
lattice of all idempotents of a JBW-algebra is an OSOL. This result is

announced in Chevalier (1995a) and proved in Chevalier (1995b). The aim

of this paper is to find a common setting for this kind of result, and it seems

that this setting is provided by Jordan triples. M. Edwards and G. RuÈ ttimann

have shown in many papers the interest of such structures in functional

analysis and they have also studied their properties related to orthomodular
structures (Edwards and RuÈ ttiman, 1995).
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The paper is organized as follows. In Section 1, we recall the definition

of a weak generalized orthomodular poset (abbreviated WGOMP) and define

orthosymmetric WGOMPs. Orthosymmetric WGOMPs can be embedded
in orthosymmetric orthomodular posets in the same way as WGOMPs are

embedded in orthomodular posets. Section 2 is devoted to Jordan triples:

definition of the WGOMPs 8(A ) of all tripotents of a Jordan triple A,

characterization of commutativity in the poset 8(A ), and study of automor-

phisms of 8(A ). The difficulty of a definition of a natural structure of

orthosymmetric WGOMP on 8(A ) in the general case is noticed. In the final
section, examples show how previous results apply to associative algebras

with involution and JB-algebras.

For notions concerning orthomodula r structures and the logicoalgebraic

approach to quantum mechanics, let we refer to PtaÂk and PulmannovaÂ(1991).

For Jordan operator algebras Hanche-Olsen and Stù rmer (1984) is a standard

reference, and for information about triple products see the papers by M.
Edwards and G. RuÈ ttimann, for example those quoted in Edwards and RuÈ tti-

mann (1995).

1. WGOMPs AND ORTHOSYMMETRIC WGOMPs

A WGOMP is a poset with a least element 0 such that every interval

[0, a] is an orthomodular poset. More precisely:

Definition 1. (Mayet-Ippolito, 1991). Let (A, # ) be a poset with a least

element 0, such that every interval [0, a] is equipped with a unary operation

x ® x ’ a. A is a weak generalized orthomodular poset (WGOMP) if it satisfies

the following conditions:

C1. For all a P A, ([0, a], # , ’ a) is an orthomodular poset.

C2. If a # b # c, then a ’ b 5 b Ù a ’ c.

Elements a and b are said to be orthogonal (in notation a ’ b) if a, b # c
and a # b ’ c for some c P A.

C3. If a ’ b, then a Ú b exists.

C4. If a ’ b, c ’ a, and c ’ b, then c ’ a Ú b.

A generalized orthomodular poset (abbreviated GOMP) A is a WGOMP

satisfying the supplementary condition:

C5. If c ’ a and c ’ b and if a Ú b exists, then c ’ a Ú b.

Examples of WGOMPs and GOMPs

1. Orthomodular lattices, orthomodular posets, and generalized ortho-

modular lattices in the sense of M. Janowitz are GOMPs.
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2. Any *-ring with a proper involution (xx* 5 0 Þ x 5 0) and, in

particular, any C*-algebra is a GOMP (Mayet-Ippolito, 1991; HedlõÂkovaÂand

PulmannovaÂ, 1995). Definitions of the order and orthogonality relations are
as follows:

a # b Û a*a 5 a*b and aa* 5 ba* a ’ b 5 b 2 a if a # b

3. Any JB-algebra with order and orthogonality relations defined by

a # b Û a2b 5 a 3, a ’ b 5 b 2 a if a # b

is a GOMP (Chevalier, 1993; HedlikovaÂand PulmannovaÂ, 1995).

Any WGOMP A can be embedded as an order ideal in an orthomodular

poset AÃ(Mayet-Ippolito, 1991) so that, for any x P AÃ, x P A or x ’ P A.
If A is a GOMP, then the embedding preserves all existing suprema of

two elements.
Two elements a and b of a WGOMP A commute (in notation: a % b)

if there exist three pairwise orthogonal elements of A, a1, b1, and c, such that

a 5 c Ú a1 and b 5 c Ú b1. Two elements a and b of a WGOMP A commute

if and only if they commute in the orthomodular poset AÃ.
Orthosymmetric ortholattices has been introduced in Mayet (1992) and

their definition has been improved and generalized to orthoposets in Mayet
and PulmannovaÂ(1995). A generalization to WGOMP is also possible.

Definition 2. A WGOMP A is said to be orthosymmetric if, for all a P
A, there exists a mapping Sa: A ® A, called an orthosymmetry, such that:

O1. S 2
a 5 IdA;

O2. If x # b, then Sa(x
’ b) 5 Sa(x) ’ Sa(b);

O3. x # y Û Sa(x) # Sa( y);

O4. a ’ b Þ Sa + Sb 5 Sa Ú b;

O5. Sa + Sb + Sa 5 SSa
(b) ( Û Sa + Sb 5 SSa(b) + Sa);

O6. Sa(x) 5 x Û x % a.

If A is an orthoposet or an orthomodular lattice, this definition is not

new: an orthosymmetric orthoposet is a orthosymmetric orthoposet (OSOP) in

the sense of Mayet and PulmannovaÂ(1995), an orthosymmetric orthomodular

lattice is an orthosymmetric ortholattice (OSOL) in the sense of Mayet (1992).

Proposition 1. Any orthosymmetric WGOMP can be embedded as an

order ideal in an OSOP.

Proof. Let A be an orthosymmetric WGOMP and AÃbe the orthomodular

poset in which A can be embedded as an order ideal. If a P A and x P AÃ\A,

we extend Sa to x by Sa(x) 5 Sa(x
’ ) ’ and if now a P AÃ\A, we extend S to
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a by Sa 5 Sa
’ . Elementary computations show that AÃ, endowed with the

family of mappings (Sa)a P AÃ, is an OSOP.

2. JORDAN TRIPLES

Most of the results of this section related to the triple product are true

in a more general setting, for example, in Jordan triple systems as defined

in McCrimmon (1982). In order to avoid complexity, we consider in this

paper that a Jordan triple A is a real or complex vector space equipped with
a triple product symmetric-bilinear in the outer variables, conjugate linear in

the middle variable (in the complex case), and which satisfies, for all elements

a, b, c, d, and e,

{ab{cde}} 2 {cd{abe}} 5 {{abc}de} 2 {c{bad}e}

For a pair of elements a and b in A, let D (a, b) and Q (a, b) be the mappings
from A 2 to A defined by

D (a, b)x 5 {abx}, Q (a, b)x 5 {axb}

D (a, a) and Q (a, a) are denoted by D (a) and Q (a). An element a in a Jordan

triple is said to be a tripotent if {aaa} 5 a. For each tripotent a the Peirce
projections are the mutually orthogonal projections P0(a), P1(a), and P2(a)

defined by

P0(a) 5 idA 2 2D (a) 1 Q 2(a),

P1(a) 5 2(D (a) 2 Q 2(a)),

P2(a) 5 Q 2(a)

Their ranges A0(a), A1(a), A2(a) satisfy the following relations:

A 5 A0(a) % A1(a) % A2(a)

{A2(a)A0(a)A} 5 {A0(a)A2(a)A} 5 {0}

{Ai (a)Aj (a)Ak(a)} # Ai 2 j 1 k(a) if 0 # i 2 j 1 k # 2

5 {0} otherwise

The Jordan triple A is said to be anisotropic if {xxx} 5 0 implies x 5 0. In

this case, the binary relation D (a, b) 5 0 is symmetric and if D (a, a) 5 0,

then a 5 0. This relation is called the orthogonality relation on A and is
denoted by ’ . The set 8(A) of all tripotents of a Jordan triple A can be

ordered by the relation a # b if b 2 a is a tripotent orthogonal to a.
For each tripotent a, the mapping ’ a: b P [0, a] ® b ’

a

5 a 2 b P
[0, a] is an orthocomplementation on the poset [0, a] which is an orthomodular
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poset and (8(A), # , { ’ a | a P 8(A)}) is a WGOMP (Edwards and RuÈ ttimann,

1995). In the search for orthosymmetries defined on 8(A) the importance of

Pierce projections leads us to determine linear combinations of these mappings
which satisfy properties similar to axioms of OSOLs.

More precisely, let l 0, l 1, and l 2 be nonzero scalars. For any tripotent

a define a linear mapping Sa by Sa 5 l 0P0(a) 1 l 1P1(a) 1 l 2P2(a). There

exist m 0, m 1, m 2 such that Sa 5 m 0idA 1 m 1D (a) 1 m 2P2(a).

Proposition 2. 1. If, for i 2 j 1 k P {0, 1, 2}, l i l j l k 5 l i 2 j+k , then Sa

is a triple automorphism and S 2 1
a 5 l 2 1

0 P0(a) 1 l 2 1
1 P1(a) 1 l 2 1

2 P2(a).

Conversely, if Sa is an automorphism and if, for i 2 j 1 k P {0, 1, 2},

{Ai (a)Aj (a)Ak(a)} Þ {0}, then i 2 j 1 k P {0, 1, 2} imply l i l j l k 5 l i 2 j+k.

2. If Sa and Sb are triple automorphisms, then Sa + Sb 5 SSa(b) + Sa.

3. If a and b are orthogonal tripotents and if Sa and Sb are triple automor-

phisms, then m 2
1 5 4 m 2 and m 0 5 1 imply Sa + Sb 5 Sb + Sa 5 Sa Ú b.

4. Involutive triple automorphisms satisfying Sa + Sb 5 SSa
(b) + Sa and

Sa + Sb 5 Sb + Sa 5 Sa Ú b if a ’ b are given by Sa 5 P0(a) 1 tP1(a) 1 t 2P2(a),

t P { 2 1, 1 1}.

Proof. (1) For the proof of Sa({xyz}) 5 {Sa(x)Sa( y)Sa(z)} decompose x,
y, and z by means of A 5 A0(a) % A1(a) % A2(a) and use {A2(a) A0(a)A} 5
{A0(a)A2(a)A} 5 {0}, {Ai (a)A j (a)Ak(a)} # A i 2 j+k(a) if 0 # i 2 j 1 k # 2

and is {0} otherwise.

(2) The proof is an easy calculation.

(3) Apply the following lemma, the proof of which uses standard identi-

ties satisfied by Jordan triples (see McCrimmon, 1982).

Lemma 1. If a and b are two orthogonal tripotents in a Jordan triple

A, then:

1. Q (a)Q (b) 5 D (a)Q (b) 5 Q (b)D (a) 5 Q (a)Q (a, b) 5 Q (a, b)Q (a)

5 0.

2. D (a 1 b) 5 D (a) 1 D (b) and 4Q 2(a, b) 5 Q (a 1 b)2 2 Q (a)2 2
Q (b)2 5 4D (a)D (b).

(4) It is an obvious consequence of (1)±(3).

Clearly, involutive triple automorphisms preserve order and orthogonal-

ity relations and thus Part 4 of the proposition shows that Sa 5 P0(a) 2 P1(a)

1 P2(a) is the unique linear combination of Peirce projections, different from

the identity, satisfying five of the six axioms of orthosymmetric WGOMPs.
In the sequel, Sa always denotes this mapping, which is called the Peirce

reflection defined by the tripotent a. Notice that Sa 5 IdA 2 2P1(a) and so

Sa is the usual symmetry associated to the projection P1(a) of the vector

space A. Axiom O6 of orthosymmetric WGOMPs means that the set of fixed
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points of Sa is the commutant of {a} and, in general, this axiom fails to hold

(see Example 1 below).

A study of the two relations Sa(b) 5 b and a % b is necessary. It is easy
to prove that, for a, b P 8(A), Sa(b) 5 b is equivalent to {aab} 5 {a {aba}a}

or b P A0(a) % A2(a) and the following proposition characterizes tripotents

which commute in the lattice meaning:

Proposition 3. Two tripotents a and b Jordan *-triple A commute if and

only if

{aab} 5 {aba} 5 {bba} 5 {bab}

Proof. If a and b commute, then there exist three pairwise orthogonal

tripotents a1, b1, and c such that a 5 c Ú a1 and b 5 c Ú b1. By using this

decomposition of a and b, the proof of {aab} 5 {aba} 5 {bba} 5 {bab}

is easy. Conversely if {aab} 5 {aba} 5 {bba} 5 {bab}, then c 5 {aab}

is a tripotent and c # a, c # b. Define two tripotents a1 5 a 2 c and b1 5
b 2 c. We have a 5 c Ú a1 and b 5 c Ú b1 with a1, b1, and c pairwise
orthogonal tripotents.

One can prove that a # b is equivalent to a 5 {aab} 5 {aba} 5 {bba} 5
{bab} and a ’ b if and only if 0 5 {aab} 5 {aba} 5 {bba} 5 {bab}.

3. EXAMPLES

Example 1. Let A be a unital JB-algebra with an anisotropic triple product

defined by {abc} 5 a (bc) 2 b (ac) 1 (ab)c. Tripotents are elements satisfying

a 3 5 a and any idempotent is a tripotent. For two tripotents a and b, Sa(b)
5 b 2 8a 2b 1 8a 2(a 2b) and Sa(b) 5 b is equivalent to a 2b 5 a 2(a 2b).

Since A is a unital JB-algebra, this is also equivalent to a 2 and b operators

commute. In the WGOMP of all tripotents of A, a 2 % a if and only if a 2 5
a and thus, since a 2 operator commutes with a, Sa(b) 5 b is not equivalent

to a % b. Now consider the set Idem(A ) 5 [0, 1] of all idempotents of A.
For a and b in Idem(A ), Sa(b) 5 b 2 8ab 1 8a (ab) 5 U2a 2 1(b), Sa(b) P
Idem(A ), and Sa(b) 5 b if and only if a % b. Thus, all the axioms of

orthosymmetric WGOMPs hold true in the poset Idem(A ) equipped with the

set of automorphisms (Sa)a P IdemA. In the particular case of a JBW-algebra (a

JB-algebra which is also a dual Banach space) Idem(A ) is a lattice and thus

an orthosymmetric ortholattice.

Example 2. Consider a *-algebra A with a proper involution and the

triple product {abc} 5 1/2(ab*c 1 cb*a). It is an anisotropic Jordan triple

in which tripotents are partial isometries. Any projection is a tripotent and,

for a projection p, the restriction of the Peirce reflection Sp to the WGOMP
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Proj(A ) of all projections of A is defined by Sp(q) 5 (2p 2 1)q (2p 2 1).

For two projections p and q, {ppq} 5 p is equivalent to pq 5 p and so the

order defined by means of the triple product is the usual order on a set of
projections. We have Sp(q) 5 q if and only if pq 5 qp, which is equivalent

to p % q and thus Axiom O6 is satisfied. The WGOMP Proj(A ), equipped

with the family of automorphisms (Sp)p P Proj(A), is orthosymmetric and, in

particular, the set of all projections of a C*-algebra is an orthosymmetric

WGOMP.

If A is also a Rickart *-ring, Proj(A ) is an orthomodular lattice and we
have obtained a proof of the main result of Chevalier (1995a) by using

Jordan triples.
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